Физики создали многоуровневые квантовые «кудиты»

Физики создали многоуровневые квантовые «кудиты»
фото показано с polit.ru

2016-7-21 12:37

Физики из Московского физико-технического института и Российского квантового центра разработали метод, который позволит упростить задачу создания универсального квантового компьютера, сообщается в пресс-релизе МФТИ.

Они нашли способ использовать для этого многоуровневые квантовые системы (кудиты), каждый из которых способен работать как несколько «обычных» квантовых элементов, кубитов.

Профессор Владимир Манько, научный руководитель Лаборатории квантовой информации МФТИ и сотрудник ФИАН, сотрудник Российского квантового центра Алексей Федоров и его коллега Евгений Киктенко опубликовали результаты своих исследований многоуровневых квантовых систем в серии статей в журналах Physical Review A, Physics Letters A, а также Quantum Measurements and Quantum Metrology. «В наших работах мы показали, что корреляции, аналогичные используемым для квантовых информационных технологий в композитных квантовых системах, имеют место и в некомпозитных системах, с которыми, как мы предполагаем, иногда оказывается легче работать. В частности, в последней работе мы предложили способ использования запутанности между внутренними степенями свободы одиночной восьмиуровневой системы для реализации протокола квантовой телепортации, ранее экспериментального реализованного для системы из трёх двухуровневых систем», - говорит Владимир Манько.

Квантовые компьютеры, которые обещают в будущем привести к революции в компьютерной технике, предполагается строить из элементарных вычислительных элементов, квантовых битов - кубитов. В то время как элементы классических компьютеров (биты) могут находиться только в двух состояниях (логический ноль, и логическая единица), кубиты создаются на основе квантовых объектов, которые могут находиться в суперпозиции двух состояний, а значит могут кодировать промежуточные состояния между логическим нулем и единицей. Работа квантового компьютера основана на том, что начальное условие некоторой задачи записывается в начальном состоянии системы кубитов, затем данные кубиты вступают в специальное взаимодействие (определяемое конкретной задачей), и, наконец, пользователь считывает ответ к задаче, производя измерение конечных состояний квантовых битов.

Квантовые компьютеры смогут решать некоторые задачи, которые сейчас абсолютно недоступны даже для самых мощных классических суперкомпьютеров. Например, для «взлома» криптографического алгоритма RSA, основанного на поиске разложения на простые множители больших чисел, обычному компьютеру для перебора вариантов потребуется время, сопоставимое с временем существования Вселенной, а квантовый может решить ее за минуты.

Однако на пути квантовой революции стоит серьезное препятствие - неустойчивость квантовых состояний. Квантовые объекты, которые используются для создания кубитов - ионы, электроны, джозефсоновские контакты, могут сохранять определенное квантовое состояние очень недолго. Но для вычислений нужно, чтобы кубиты не только сохранили состояние, но и еще и провзаимодействовали друг с другом. Физики по всему миру пытаются продлить срок жизни кубитов. Раньше сверхпроводящие кубиты «выживали» наносекунды, а теперь их удается удержать от декогеренции уже миллисекунды - уже близко к тому времени, которое необходимо для вычислений. Но в случае с системой из десятков и сотен кубитов задача становится принципиально сложнее.

Манько, Федоров и Киктенко начали решать задачу «с другого конца» - не пытаться сохранить устойчивость большой системы кубитов, а уменьшить размеры необходимой для вычислений системы. Они исследуют возможности использования для вычислений не кубитов, а кудитов - квантовых объектов, в которых число возможных состояний (уровней) больше двух (их число обозначают буквой D). Существуют кутриты с тремя состояниями, кукварты (четыре состояния) и т. д. Сейчас активно изучаются алгоритмы, в которых использование кудитов может демонстрировать преимущества по сравнению с использованием кубитов.

Многоуровневый кудит - кукварт. Илл. : МФТИ

«Кудит с тремя-четырьмя уровнями уже может работать как система из двух «обычных» кубитов, а восьми уровней достаточно, чтобы имитировать трехкубитную систему. Поначалу мы воспринимали эту эквивалентность как математическую, которая позволяет получать новые энтропийные соотношения. Например, мы получали величину взаимной информации (меры корреляции) между виртуальными кубитами, выделенными в пространстве состояний одиночной четырехуровневой системы», - говорит Федоров.

Он и его коллеги показали, что на единственном кудите с пятью уровнями, реализованном с помощью искусственного атома, уже можно осуществлять полноценные квантовые вычисления, в частности, запустить алгоритм Дойча, предназначенный для проверки значений большого числа двоичных переменных.

«Мы получаем существенный выигрыш, поскольку многоуровневые кудиты в определенных физических реализациях контролировать проще, чем систему из соответствующего количества кубитов, а значит мы на шаг приближаемся к созданию полноценного квантового компьютера. Многоуровневые элементы обеспечивают преимущества и в других квантовых технологиях, например, в квантовой криптографии», - говорит Федоров.

.

Аналог Ноткоин - TapSwap Получай Бесплатные Монеты

Подробнее читайте на

кубитов квантовых системы квантовые состояний квантового кубиты вычислений